Reg. No. :

Question Paper Code : 86623

B.E./B.Tech. DEGREE EXAMINATIONS, NOVEMBER/DECEMBER 2021.

Fourth/Fifth/Sixth Semester

Civil Engineering

MA 1251 — NUMERICAL METHODS

(Common to Aeronautical Engineering, Computer Science and Engineering, Electrical and Electronics Engineering, Electronics and Communication Engineering, Chemical Engineering, Information Technology and Petrochemical Technology)

(Regulations 2008)

Time : Three hours

Maximum : 100 marks

Answer ALL questions.

PART A —
$$(10 \times 2 = 20 \text{ marks})$$

- 1. Derive Newton's algorithm for finding the p^{th} root of a number *N*, where N > 0.
- 2. Explain the procedure involved in the Gauss Jordan elimination method.
- 3. State Newton's forward interpolation formula.
- 4. Using Lagrange's formula, find the polynomial to the given data :

X:	0	1	3
Y:	5	6	50

- 5. What are the errors in Trapezoidal and Simpson's rules of numerical integration?
- 6. State three point Gaussian quadrature formula
- 7. By Taylor series with first two non-zero terms find y(1.1) given that y' = x + y, y(1) = 0.
- 8. Using Euler's method find y(0.2) given that y'=x+y, y(0)=1.

- 9. Write the diagonal five point formula for solving the two dimensional Laplace equation $\nabla^2 u = 0$.
- Using finite difference solve y'' y = 0 given y(0) = 0, y(1) = 1, n = 2. 10.

PART B — $(5 \times 16 = 80 \text{ marks})$

11. (a) (i) Solve $e^x - 3x = 0$ by the method of fixed point iteration. (8)

> (ii) Solve the following system by Gauss-Seidal iterative procedure : 10x - 5y - 2z = 3, 4x - 10y + 3z = -3, x + 6y + 10z = -3.(8)

Or

(b)	(i)	Using Gauss-Jordan method, find the inverse of	$ \begin{array}{rrrr} 2 & 2 \\ 2 & 6 \\ 4 & -8 \end{array} $	$\begin{array}{c} 6 \\ -6 \\ -8 \end{array}$		(8)
	(ii)	Using power method, find all the eigenvalues of	f A =	$\begin{pmatrix} 5 & 0 \\ 0 & - \\ 1 & 0 \end{pmatrix}$) 2)	$\begin{pmatrix} 1\\0\\5 \end{pmatrix}$.

(8)12.Apply Lagrange's formula, to find y(27) to the data given below :(8) (a) (i) x:14173135

- $68.8 \quad 64 \quad 44$ 39.1y:
- (ii) Fit a polynomial, by using Newton's forward interpolation formula, to the data given below : (8)

x:	0	1	2	3
<i>y</i> :	1	2	1	10

 \mathbf{Or}

(b) Use Newton's divided difference formula to find f(x) from the (i) following data : (8)

x:	1	2	7	8
y:	1	5	5	4

(ii) Using cubic spline, compute y(1.5) from the given data : (8)

> x:1 $\mathbf{2}$ 3 y:-8 -118

> > 86623

5

13. (a) (i) Using Romberg's method, evaluate $I = \int_{0}^{1} \frac{dx}{1+x}$, correct to 3 decimal places. Evaluate $\log_{e} 2$. (8)

(ii) Evaluate
$$\int_{0}^{\pi/2} \int_{0}^{\pi/2} \sqrt{\sin(x+y)} \, dx \, dy$$
 by using Trapezoidal rule. (8)

Or

(b) (i) From the following table, obtain the value of $\frac{d^2y}{dx^2}$ at x = 0.96. (8) $x: 0.96 \quad 0.98 \quad 1.00 \quad 1.02 \quad 1.04$ $f(x): 0.7825 \quad 0.7739 \quad 0.7651 \quad 0.7563 \quad 0.7473$

(ii) Evaluate
$$\int_{0}^{1} \frac{1}{1+x^2} dx$$
 using Gauss three point formula. (8)

14. (a) (i) Solve
$$y' = x + y$$
; $y(0) = 1$ by Taylore series method, find the values of y at $x = 0.1$ and $x = 0.2$. (8)

(ii) Given
$$\frac{dy}{dx} = x^2 (1+y), y(1) = 1, y(1.1) = 1.233, y(1.2) = 1.548,$$

 $y(1.3) = 1.979$ evaluate $y(1.4)$ by Adam's-Bashforth method. (8)

Or

(b) (i) Using R-K method of fourth order solve
$$\frac{dy}{dx} = \frac{y^2 - x^2}{y^2 + x^2}$$
, with $y(0) = 1$ at $x = 0.2$. (8)

(ii) Using Milne's method find
$$y(4.4)$$
 given
 $5xy^1 + y^2 - 2 = 0, y(4) = 1, y(4.1) = 1.0049, y(4.2) = 1.0097,$
 $y(4.3) = 1.0143.$ (8)

15. (a) By iteration method solve the elliptic equation $u_{xx} + u_{yy} = 0$ over the square region of side 4, satisfying the boundary conditions.

(i) $u(0, y) = 0, 0 \le y \le 4$

(ii)
$$u(4, y) = 8 + 2y, \ 0 \le y \le 4$$

(iii)
$$u(x, 0) = \frac{x^2}{2}, \ 0 \le x \le 4$$

(iv) $u(x, 4)=x^2, 0 \le x \le 4$ Compute the values at the interior points correct to one decimal with h=k=1. (16)

86623

- (b) (i) Using Crank-Nicolson's scheme, solve $16 \frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$, 0 < x < 1, t > 0subject to u(x, 0) = 0, u(0,t) = 0, u(1, t) = 100t. Compute u for one step in t direction taking $h = \frac{1}{4}$. (8)
 - (ii) Solve $u_{tt} = u_{xx}$, 0 < x < 2, t > 0 subject to u(x, 0) = 0, $u_t(x, 0) = 100(2x - x^2)$, u(0, t) = 0, u(2, t) = 0, choosing $h = \frac{1}{2}$ compute u for four time steps. (8)